Classical Mechanics: B.Sc. Third year: Chapter -Elementary Principles

D'Alembert's Principle

Let us suppose a system is in equilibrium i.e. the total force F_i on every particle is zero then workdone by this force in a small virtual displacement δr_i will also vanish. i.e for whole system for N particles

$$
\sum_{i=1}^{N} \boldsymbol{F}_i \cdot \delta \boldsymbol{r}_i = 0 \dots \dots \dots \dots (1)
$$

Let this total force be expressed as sum of applied force F_i^a and forces of constraints f_i . Then above equation takes the form,

$$
\sum_{i} F_i^a \cdot \delta r_i + \sum_{i} f_i \cdot \delta r_i = 0 \dots \dots \dots (2)
$$

We now consider the system for which the virtual work of the forces of constraint is zero. Thus,

$$
\sum_{i} F_i^a \cdot \delta r_i = 0 \dots \dots \dots \dots \dots (3)
$$

The equation is termed as principle of virtual work.

To interpret the equilibrium of the system, D'Alembert adopted an idea of a reversed force.

He considered that a system will remain in equilibrium under the action of a force equal to the actual force $\bm{F}_{\bm{i}}$ plus reversed effective force $\dot{\bm{p}}_{\bm{i}}$.

Thus,

$$
\boldsymbol{F}_i + (-\boldsymbol{p}_i) = 0
$$

$$
\boldsymbol{F}_i - \boldsymbol{p}_i = 0
$$

where, $\dot{\boldsymbol{p}}_t$ represents an effective force called reversed force of inertia on the i^{th} particle. Thus principle of virtual work takes the form,

$$
\sum_{i} (\boldsymbol{F}_i - \boldsymbol{p}_i). \delta \boldsymbol{r}_i = 0 \dots \dots (4)
$$

Again putting, $F_i = F_i^a + f_i$ in eq(4);

$$
\sum_{i} (F_i^a - \dot{p}_i) . \delta r_i + \sum_{i} f_i . \delta r_i = 0
$$

Since there is no constraint, $f_i = 0$. Then

$$
\sum_i (\boldsymbol{F}_i^a - \boldsymbol{p}_i) . \delta \boldsymbol{r}_i = 0
$$

To write in generalised form omit superscript a. Hence we get

$$
\sum_i (\boldsymbol{F}_i - \boldsymbol{p}_i). \delta \boldsymbol{r}_i = 0
$$

Which is called D'Alembert's Principle.

#Derivation of Lagrange's equation from D'Alembert's Principle

The co-ordinate transformation equations are ;

$$
r_i = r_i(q_1, q_2, q_3 \dots q_n, t)
$$

So that;

$$
\frac{d\mathbf{r}_i}{dt} = \frac{\partial \mathbf{r}_i}{\partial q_1} \frac{dq_1}{dt} + \frac{\partial \mathbf{r}_i}{\partial q_2} \frac{dq_2}{dt} + \dots + \frac{\partial \mathbf{r}_i}{\partial t} \frac{dt}{dt}
$$

$$
\mathbf{v}_i = \sum_j \frac{\partial \mathbf{r}_i}{\partial q_j} \dot{q}_j + \frac{\partial \mathbf{r}_i}{\partial t} \dots (1)
$$

Further infinitesimal displacement δr_i can be written as;

$$
\delta r_i = \sum_j \frac{\partial r_i}{\partial q_j} \, \delta q_j + \frac{\partial r_i}{\partial t} \, \delta t
$$

Here, last term is zero since in virtual displacement only coordinate displacement is considered and not that of time. Therefore;

$$
\delta r_i = \sum_j \frac{\partial r_i}{\partial q_j} \, \delta q_j
$$

From D'Alembert's Principle,

$$
\sum_i (\boldsymbol{F}_i - \boldsymbol{p}_i). \delta \boldsymbol{r}_i = 0
$$

Putting value of δr_i

$$
\sum_{i} (\mathbf{F}_{i} - \dot{\mathbf{p}}_{i}). \sum_{j} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = 0
$$

$$
\sum_{ij} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} - \sum_{ij} \dot{\mathbf{p}}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = 0
$$

Let us define ;

$$
\sum_i \boldsymbol{F}_i \cdot \frac{\partial \boldsymbol{r}_i}{\partial q_j} = Q_j
$$
; called generalised force.

Then above equation takes the form;

$$
\sum_{j} Q_{j} \, \delta q_{j} - \sum_{ij} \boldsymbol{p}_{i} \cdot \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \, \delta q_{j} = 0 \dots (2)
$$

Let us simplify the second term;

$$
\sum_{ij} \vec{p}_i \cdot \frac{\partial r_i}{\partial q_j} \delta q_j = \sum_{ij} m_i \vec{r}_i \cdot \frac{\partial r_i}{\partial q_j} \delta q_j
$$

$$
= \sum_{ij} \left\{ \frac{d}{dt} \left(m_i \vec{r}_i \cdot \frac{\partial r_i}{\partial q_j} \right) - m_i \vec{r}_i \cdot \frac{d}{dt} \left(\frac{\partial r_i}{\partial q_j} \right) \right\} \delta q_j
$$

$$
\sum_{ij} \vec{p}_i \cdot \frac{\partial r_i}{\partial q_j} \delta q_j = \sum_{ij} \left\{ \frac{d}{dt} \left(m_i \vec{v}_i \cdot \frac{\partial r_i}{\partial q_j} \right) - m_i \vec{v}_i \cdot \frac{d}{dt} \left(\frac{\partial r_i}{\partial q_j} \right) \right\} \delta q_j \dots (3)
$$

$$
\sum_{ij} \vec{p}_i \cdot \frac{\partial r_i}{\partial q_j} \delta q_j = \sum_{ij} \left\{ \frac{d}{dt} \left(m_i \vec{v}_i \cdot \frac{\partial r_i}{\partial q_j} \right) - m_i \vec{v}_i \cdot \frac{\partial}{\partial q_j} \left(\frac{dr_i}{dt} \right) \right\} \delta q_j
$$

$$
\sum_{ij} \vec{p}_i \cdot \frac{\partial r_i}{\partial q_j} \delta q_j = \sum_{ij} \left\{ \frac{d}{dt} \left(m_i \vec{v}_i \cdot \frac{\partial r_i}{\partial q_j} \right) - m_i \vec{v}_i \cdot \frac{\partial r_i}{\partial q_j} \right\} \delta q_j
$$

Again;
$$
\frac{\partial \mathbf{r}_i}{\partial q_j} = \frac{\partial \mathbf{v}_i}{\partial \dot{q}} \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j = \sum_{ij} \left\{ \frac{d}{dt} \left(m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{v}_i}{\partial \dot{q}} \right) - m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{v}_i}{\partial q_j} \right\} \delta q_j
$$
\n
$$
\sum_{ij} \mathbf{p}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j = \sum_j \left[\frac{d}{dt} \left\{ \frac{\partial}{\partial q_j} \left(\sum_i \frac{1}{2} m_i v_i^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\sum_i \frac{1}{2} m_i v_i^2 \right) \right\} \delta q_j
$$
\n
$$
\sum_{ij} \mathbf{p}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j = \sum_j \left[\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{q}_j} \right) - \frac{\partial \mathbf{T}}{\partial q_j} \right] \delta q_j
$$

Putting this value in eq (2) then

$$
\sum_{j} Q_{j} \delta q_{j} - \sum_{j} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] \delta q_{j} = 0
$$

$$
\sum_{j} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} - Q_{j} \right] \delta q_{j} = 0
$$

By making the coefficients of δq_j to be zero, we get

$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} - Q_j = 0
$$

$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j \dots (4)
$$

Case I: For conservative system

In conservative system potential energy is the function of coordinate only. i.e. $V = V(r)$

$$
\boldsymbol{F}_i = -\frac{\partial V}{\partial \boldsymbol{r}_i}
$$

Then generalized force can be written as;

$$
Q_j = \sum_i \boldsymbol{F}_i \cdot \frac{\partial r_i}{\partial q_j} = \sum_i \frac{\partial V}{\partial r_i} \cdot \frac{\partial r_i}{\partial q_j} = -\frac{\partial V}{\partial q_j}
$$

Putting value of Q_j in eq (4), we get

$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = -\frac{\partial V}{\partial q_j}
$$

$$
\frac{d}{dt} \left(\frac{\partial (T - V)}{\partial \dot{q}_j} \right) - \frac{\partial (T - V)}{\partial q_j} = 0
$$

$$
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0
$$

Which is required equation.

where $L = T - V$; represents Lagrangian.

Above equation is called **Lagrange's equation of motion** for conservative system.

Case II: Non-conservative system

Here potential energy is velocity dependent so geeralised force can be written as;

$$
Q_j = -\frac{\partial U}{\partial q_j} + \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_j} \right)
$$

Now from eq(4);

$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_j}\right) - \frac{\partial T}{\partial q_j} = -\frac{\partial U}{\partial q_j} + \frac{d}{dt}\left(\frac{\partial U}{\partial \dot{q}_j}\right)
$$

$$
\frac{d}{dt}\left(\frac{\partial (T - U)}{\partial \dot{q}_j}\right) - \frac{\partial (T - U)}{\partial q_j} = 0
$$

If we put Lagrangian for non-conservative system as $L = T - U$ then above equation becomes;

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0
$$