Classical Mechanics: B.Sc. Third year: Chapter -Elementary Principles

# D'Alembert's Principle

Let us suppose a system is in equilibrium i.e. the total force F; on every particle is zero then
workdone by this force in a small virtual displacement 6r; will also vanish. i.e for whole
system for N particles

-
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Let this total force be expressed as sum of applied force Fi and forces of constraints f;. Then
above equation takes the form,

We now consider the system for which the virtual work of the forces of constraint is zero. Thus,

Z F&. 871 =0 e (3)
i

The equation is termed as principle of virtual work.
To interpret the equilibrium of the system, D'Alembert adopted an idea of a reversed force.

He considered that a system will remain in equilibrium under the action of a force equal to the
actual force F; plus reversed effective force p,.

Thus,
Fi + (_Ijl) = 0
Fi—p,=0
where, p, represents an effective force called reversed force of inertia on the it* particle.

Thus principle of virtual work takes the form,

Again putting , F; = Fi + f; in eq(4);



l

Z(F? —p). 5T + Zfi 51y =0
i

Since there is no constraint, f; = 0. Then
> (FE=p.87 =0
i
To write in generalised form omit superscript a. Hence we get

Z(Fi —p).6r; =0

Which is called D'Alembert's Principle.

#Derivation of Lagrange's equation from D'Alembert's Principle

The co-ordinate transformation equations are ;

r; =1i(q1,92,q3 - - qn, t)

So that;
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Further infinitesimal displacement §r; can be written as;
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Here, last term is zero since in virtual displacement only coordinate displacement is considered

and not that of time. Therefore;
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From D'Alembert's Principle,
z(Fi —P)-6r; =0
i

Putting value of or;

Z(F ')zar"(s =0
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Let us define ;

ar;
Z F; a_ql = Q; ;called generalised force.
. j

Then above equation takes the form;
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Let us simplify the second term;
Z . arl S . Z . ari 5
. =— =) m7r,. — 0q;
ij lj
_ Z d 6r,- d (0r; 5
= 2@\t aq; M Ty aq; )| Y
ij
z z d ari d ari s 3
ij
Z Z d ari 0 (dri) 5
pl j . dt m; v; . a m; v;. aq,- dt qj

d 6ri dv;
Zpl ; Z dt m; v; . a _mivi-a_q_ 5qj

ij



or, _ v,

Again, — = —
g aq]' aq
Y 2o =Y (o ) -min 22
m; v; - m; V. — i
. pl aq] . dt 1 Y- a |} aq_’ q]

Z . ory P Z d| o Zl ) d /Zl 2)| s
ij j i
Z Z oT 5
P aq] dt aq] aqj_ K

ij

Putting this value in eq (2) then
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By making the coefficients of §g; to be zero, we get

d (9T oT 0
dt\dqd,) 9q; =
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Case I: For conservative system

In conservative system potential energy is the function of coordinate only. i.e. V =V (r)

Then generalized force can be written as;

Q —ZF aT'i _ av E)ri aVv
] l'aqj
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Putting value of Q; in eq (4), we get
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where L =T — V;represents Lagrangian.

Which is required equation.

Above equation is called Lagrange's equation of motion for conservative system.

Case Il: Non-conservative system

Here potential energy is velocity dependent so geeralised force can be written as;

__0u dfou
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Now from eq(4);

If we put Lagrangian for non-conservative system as L = T — U then above equation becomes;






