B.Sc. Third year (Classical Mechanics)

Chapter 10- Variational Principles and Lagrange’s equations
Lecture 2

Examples of Calculus of Variation

# Minimum surface of revolution

We form a surface of revolution by revolving a curve about a certain axis. In this example, a
curve passing through two ends (x4, y;) and (x,, y,) has been rotated about y-axis.
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Let us consider a strip at point A formed due to the revolution of the arc length ds about Y-axis.
If the distance of this arc from y-axis is x then the surface area of the strip 2mx ds
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The total surface area is then
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And it will be minimum if 61 = 0 for which the equation,
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Here f = 2mxy/1 + (¥)? so that
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Putting these values in eq (i),
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On integrating,
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Which is the equation of catenary.



## The Branchistochrone problem

In this problem we find a curve joining two points along which a particle falling from rest under
the influence of gravity travels from higher to lower point in the minimum time.
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Suppose v is the speed of particle along the curve then in traversing ds portion of the curve
time spent will be % so that the total time taken by particle in moving from heighest point 1 to
lowest point 2 is
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Suppose vertical distance of fall upto point 2 be x then from principle of conservation of
energy,




Where, f = Vl;;i)z

For t;, to be minimum it must satisfy the equation,
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Now putting values in eq (i)
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Let us put, % = 2a now after integration we get
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Which represents an inverted cycloid with the base along y axis and cusp at the origin.






