B.Sc. Third year (Classical Mechanics)

Chapter 10-Variational Principles and Lagrange's equations
Lecture 2
Examples of Calculus of Variation

\# Minimum surface of revolution

We form a surface of revolution by revolving a curve about a certain axis. In this example, a curve passing through two ends $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has been rotated about y -axis.

X

Let us consider a strip at point A formed due to the revolution of the arc length $d s$ about Y -axis. If the distance of this arc from y-axis is x then the surface area of the strip $2 \pi x d s$

$$
=2 \pi x \sqrt{1+(\dot{y})^{2}} d x
$$

The total surface area is then

$$
I=\int_{1}^{2} 2 \pi x \sqrt{1+(\dot{y})^{2}} d x=\int_{1}^{2} f d x
$$

And it will be minimum if $\delta I=0$ for which the equation,

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial \dot{y}}\right)=0 \ldots \ldots(i)
$$

Here $f=2 \pi x \sqrt{1+(\dot{y})^{2}}$ so that

$$
\frac{\partial f}{\partial y}=0 ; \quad \frac{\partial f}{\partial \dot{y}}=2 \pi \frac{x \dot{y}}{\sqrt{1+(\dot{y})^{2}}}
$$

Putting these values in eq (i),

$$
\begin{gathered}
\frac{d}{d x}\left(2 \pi \frac{x \dot{y}}{\sqrt{1+(\dot{y})^{2}}}\right)=0 \\
\frac{x \dot{y}}{\sqrt{1+(\dot{y})^{2}}}=a(\text { say })
\end{gathered}
$$

Squaring,

$$
\begin{gathered}
x^{2}(\dot{y})^{2}=a^{2}+a^{2}(\dot{y})^{2} \\
(\dot{y})^{2}=\frac{a^{2}}{x^{2}-a^{2}} \\
\dot{y}=\frac{a}{\sqrt{x^{2}-a^{2}}}
\end{gathered}
$$

On integrating,

$$
\begin{aligned}
y & =a \cosh ^{-1} \frac{x}{a}+b \\
x & =a \cosh \frac{y-b}{a}
\end{aligned}
$$

Which is the equation of catenary.

\#\# The Branchistochrone problem

In this problem we find a curve joining two points along which a particle falling from rest under the influence of gravity travels from higher to lower point in the minimum time.

Suppose v is the speed of particle along the curve then in traversing $d s$ portion of the curve time spent will be $\frac{d s}{v}$ so that the total time taken by particle in moving from heighest point 1 to lowest point 2 is,

$$
t_{12}=\int_{1}^{2} \frac{d s}{v}
$$

Suppose vertical distance of fall unto point 2 be x then from principle of conservation of energy,

$$
\begin{gathered}
\frac{1}{2} m v^{2}=m g x \\
v=\sqrt{2 g x} \\
t_{12}=\int_{1}^{2} \frac{\sqrt{d x^{2}+d y^{2}}}{\sqrt{2 g x}}=\int_{1}^{2} \frac{\sqrt{1+(\dot{y})^{2}}}{\sqrt{2 g x}} d x=\int_{1}^{2} f d x
\end{gathered}
$$

Where, $f=\frac{\sqrt{1+(\dot{y})^{2}}}{\sqrt{2 g x}}$
For t_{12} to be minimum it must satisfy the equation,

$$
\begin{gathered}
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial \dot{y}}\right)=0 \ldots \ldots(i) \\
\frac{\partial f}{\partial y}=0 ; \quad \frac{\partial f}{\partial \dot{y}}=\frac{\dot{y}}{\sqrt{2 g x} \sqrt{1+(\dot{y})^{2}}}
\end{gathered}
$$

Now putting values in eq (i)

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{\dot{y}}{\sqrt{2 g x} \sqrt{1+(\dot{y})^{2}}}\right)=0 \\
\frac{\dot{y}}{\sqrt{x} \sqrt{1+(\dot{y})^{2}}}=\text { constant } \\
\frac{(\dot{y})^{2}}{x\left(1+(\dot{y})^{2}\right)}=c \\
\frac{(\dot{y})^{2}}{c}=x\left(1+(\dot{y})^{2}\right) \\
(\dot{y})^{2}\left(\frac{1}{c}-x\right)=x \\
(\dot{y})^{2}\left(\frac{x}{c}-x^{2}\right)=x^{2} \\
\dot{y}=\frac{x^{2}}{\left(\frac{x}{c}-x^{2}\right)^{\frac{1}{2}}}
\end{gathered}
$$

Let us put, $\frac{1}{c}=2 a$ now after integration we get

$$
y=a \cos ^{-1}\left(1-\frac{x}{a}\right)-\left(2 a x-x^{2}\right)^{\frac{1}{2}}
$$

Which represents an inverted cycloid with the base along y axis and cusp at the origin.

